REFERENCES

1. Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science 2004;306:666-9.

2. Novoselov KS, Mishchenko A, Carvalho A, Castro Neto AH. 2D materials and van der Waals heterostructures. Science 2016;353:aac9439.

3. Nikonov KS, Brekhovskikh MN, Egorysheva AV, Menshchikova TK, Fedorov VA. Chemical vapor transport growth of vanadium(IV) selenide and vanadium(IV) telluride single crystals. Inorg Mater 2017;53:1126-30.

4. Chen B, Yang J, Wang H, et al. Magnetic properties of layered itinerant electron ferromagnet Fe3 GeTe2. J Phys Soc Jpn 2013;82:124711.

5. Zhang X, Zhao Y, Song Q, Jia S, Shi J, Han W. Magnetic anisotropy of the single-crystalline ferromagnetic insulator Cr2 Ge2 Te6. Jpn J Appl Phys 2016;55:033001.

6. Wang Z, Sapkota D, Taniguchi T, Watanabe K, Mandrus D, Morpurgo AF. Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals heterostructures. Nano Lett 2018;18:4303-8.

7. Liu C, Wang Y, Li H, et al. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat Mater 2020;19:522-7.

8. Kong T, Stolze K, Timmons EI, et al. VI3-a new layered ferromagnetic semiconductor. Adv Mater 2019;31:e1808074.

9. Huang C, Feng J, Wu F, et al. Toward intrinsic room-temperature ferromagnetism in two-dimensional semiconductors. J Am Chem Soc 2018;140:11519-25.

10. Gong C, Li L, Li Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017;546:265-9.

11. Otrokov MM, Klimovskikh II, Bentmann H, et al. Prediction and observation of an antiferromagnetic topological insulator. Nature 2019;576:416-22.

12. Otrokov MM, Rusinov IP, Blanco-Rey M, et al. Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 films. Phys Rev Lett 2019;122:107202.

13. Tsen AW, Hunt B, Kim YD, et al. Nature of the quantum metal in a two-dimensional crystalline superconductor. Nature Phys 2016;12:208-12.

14. Song Q, Occhialini CA, Ergeçen E, et al. Evidence for a single-layer van der Waals multiferroic. Nature 2022;602:601-5.

15. Fumega AO, Gobbi M, Dreher P, et al. Absence of ferromagnetism in VSe2 caused by its charge density wave phase. J Phys Chem C 2019;123:27802-10.

16. Xi X, Zhao L, Wang Z, et al. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat Nanotechnol 2015;10:765-9.

17. Chen L, Chung J, Gao B, et al. Topological spin excitations in honeycomb ferromagnet CrI3. Phys Rev X 2018:8.

18. Cao Q, Yun FF, Sang L, Xiang F, Liu G, Wang X. Defect introduced paramagnetism and weak localization in two-dimensional metal VSe2. Nanotechnology 2017;28:475703.

19. Liu H, Bao L, Zhou Z, et al. Quasi-2D transport and weak antilocalization effect in few-layered VSe2. Nano Lett 2019;19:4551-9.

20. Wu Y, Zhang S, Zhang J, et al. Néel-type skyrmion in WTe2/Fe3GeTe2 van der Waals heterostructure. Nat Commun 2020;11:3860.

21. Liu Y, Weiss NO, Duan X, et al. Van der Waals heterostructures and devices. Nat Rev Mater 2016;1:1-17.

22. Thiel L, Wang Z, Tschudin MA, et al. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science 2019;364:973-6.

23. Avsar A, Ochoa H, Guinea F, Özyilmaz B, van Wees B, Vera-marun I. Colloquium: Spintronics in graphene and other two-dimensional materials. Rev Mod Phys 2020;92:021003.

24. Tokura Y, Yasuda K, Tsukazaki A. Magnetic topological insulators. Nat Rev Phys 2019;1:126-43.

25. Tannous C, Comstock RL. Magnetic information-storage materials. In: Kasap S, Capper P, editors. Springer Handbook of Electronic and Photonic Materials. Cham: Springer International Publishing; 2017. p. 1.

26. Mcguire MA, Dixit H, Cooper VR, Sales BC. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem Mater 2015;27:612-20.

27. Banerjee A, Bridges CA, Yan JQ, et al. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. Nat Mater 2016;15:733-40.

28. Zhou P, Sun CQ, Sun LZ. Two dimensional antiferromagnetic Chern insulator: NiRuCl6. Nano Lett 2016;16:6325-30.

29. Zhang X, Zhao X, Wu D, Jing Y, Zhou Z. MnPSe3 monolayer: a promising 2D visible-light photohydrolytic catalyst with high carrier mobility. Adv Sci (Weinh) 2016;3:1600062.

30. Desai SB, Madhvapathy SR, Amani M, et al. Gold-mediated exfoliation of ultralarge optoelectronically-perfect monolayers. Adv Mater 2016;28:4053-8.

31. Yang K, Hu W, Wu H, Whangbo M, Radaelli PG, Stroppa A. Magneto-optical kerr switching properties of (CrI3 ) 2 and (CrBr3 /CrI3 ) bilayers. ACS Appl Electron Mater 2020;2:1373-80.

32. Zhong D, Seyler KL, Linpeng X, et al. Layer-resolved magnetic proximity effect in van der Waals heterostructures. Nat Nanotechnol 2020;15:187-91.

33. Song T, Cai X, Tu MW, et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 2018;360:1214-8.

34. Gong Y, Liu Z. Preface to the special issue on tungsten-and molybdenum-based two-dimensional materials for energy storage and conversion. Tungsten 2020;2:107-8.

35. Luo G, Lu G, Liu X. Preface to the special issue on plasma facing materials for fusion energy. Tungsten 2019;1:121-121.

36. Jiang S, Li L, Wang Z, Shan J, Mak KF. Spin tunnel field-effect transistors based on two-dimensional van der Waals heterostructures. Nat Electron 2019;2:159-63.

37. Tombros N, Jozsa C, Popinciuc M, Jonkman HT, van Wees BJ. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 2007;448:571-4.

38. Sun Y, Zhuo Z, Wu X, Yang J. Room-temperature ferromagnetism in two-dimensional Fe2Si nanosheet with enhanced spin-polarization ratio. Nano Lett 2017;17:2771-7.

39. Escolar J, Peimyoo N, Craciun MF, et al. Anisotropic magnetoconductance and coulomb blockade in defect engineered Cr2Ge2Te6 van der Waals heterostructures. Phys Rev B 2019:100.

40. Miao GX, Müller M, Moodera JS. Magnetoresistance in double spin filter tunnel junctions with nonmagnetic electrodes and its unconventional bias dependence. Phys Rev Lett 2009;102:076601.

41. Alghamdi M, Lohmann M, Li J, et al. Highly efficient spin-orbit torque and switching of layered ferromagnet Fe3GeTe2. Nano Lett 2019;19:4400-5.

42. Li LJ, O'Farrell EC, Loh KP, Eda G, Özyilmaz B, Castro Neto AH. Controlling many-body states by the electric-field effect in a two-dimensional material. Nature 2016;529:185-9.

43. Hu W, Yang K, Stroppa A, Continenza A, Wu H. 2D hybrid CrCl2 (N2C4H4)2 with tunable ferromagnetic half-metallicity. J Mater Chem C 2021;9:5985-91.

44. Deng Y, Yu Y, Song Y, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018;563:94-9.

45. Zhang C, Nie Y, Sanvito S, Du A. First-principles prediction of a room-temperature ferromagnetic janus VSSe monolayer with piezoelectricity, ferroelasticity, and large valley polarization. Nano Lett 2019;19:1366-70.

46. Hohenberg PC. Existence of long-range order in one and two dimensions. Phys Rev 1967;158:383-6.

47. Mermin ND, Wagner H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic heisenberg models. Phys Rev Lett 1966;17:1133-6.

48. Lines ME. Magnetism in two dimensions. Journal of Applied Physics 1969;40:1352-8.

49. Kohlhepp J, Elmers HJ, Cordes S, Gradmann U. Power laws of magnetization in ferromagnetic monolayers and the two-dimensional Ising model. Phys Rev B Condens Matter 1992;45:12287-91.

50. Pacilé D, Meyer JC, Girit ÇÖ, Zettl A. The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Appl Phys Lett 2008;92:133107.

51. Li L, Yu Y, Ye GJ, et al. Black phosphorus field-effect transistors. Nat Nanotechnol 2014;9:372-7.

52. Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 2011;23:4248-53.

53. Manzeli S, Ovchinnikov D, Pasquier D, Yazyev OV, Kis A. 2D transition metal dichalcogenides. Nat Rev Mater 2017;2:17033.

54. Zhuang HL, Xie Y, Kent PRC, Ganesh P. Computational discovery of ferromagnetic semiconducting single-layer CrSnTe3. Phys Rev B 2015:92.

55. Ge Y, Zhu Z, Xu Y, et al. Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices. Advanced Optical Materials 2018;6:1701166.

56. Joy PA, Vasudevan S. Magnetism in the layered transition-metal thiophosphates MPS3 (M = Mn, Fe, and Ni). Phys Rev B Condens Matter 1992;46:5425-33.

57. Casto LD, Clune AJ, Yokosuk MO, et al. Strong spin-lattice coupling in CrSiTe3. APL Materials 2015;3:041515.

58. Lado JL, Fernández-rossier J. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater 2017;4:035002.

59. Grönke M, Buschbeck B, Schmidt P, et al. Chromium trihalides Cr. X ;6:1901410.

60. Cai X, Song T, Wilson NP, et al. Atomically thin CrCl3: an in-plane layered antiferromagnetic insulator. Nano Lett 2019;19:3993-8.

61. Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017;546:270-3.

62. Zhou Y, Wang Z, Yang P, et al. Tensile strain switched ferromagnetism in layered NbS2 and NbSe2. ACS Nano 2012;6:9727-36.

63. Chua R, Yang J, He X, et al. Can reconstructed se-deficient line defects in monolayer VSe2 induce magnetism? Adv Mater 2020;32:e2000693.

64. Bonilla M, Kolekar S, Ma Y, et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat Nanotechnol 2018;13:289-93.

65. Meng L, Ma Y, Si K, Xu S, Wang J, Gong Y. Recent advances of phase engineering in group VI transition metal dichalcogenides. Tungsten 2019;1:46-58.

66. Ding X, Liu T, Ahmed S, Bao N, Ding J, Yi J. Enhanced ferromagnetism in WS2 via defect engineering. Journal of Alloys and Compounds 2019;772:740-4.

67. Yun SJ, Duong DL, Ha DM, et al. Ferromagnetic order at room temperature in monolayer WSe2 semiconductor via vanadium dopant. Adv Sci (Weinh) 2020;7:1903076.

68. Tongay S, Varnoosfaderani SS, Appleton BR, Wu J, Hebard AF. Magnetic properties of MoS2: existence of ferromagnetism. Appl Phys Lett 2012;101:123105.

69. Xia B, Gao D, Liu P, Liu Y, Shi S, Tao K. Zigzag-edge related ferromagnetism in MoSe2 nanoflakes. Phys Chem Chem Phys 2015;17:32505-10.

70. Liu W, Dai Y, Yang Y, et al. Critical behavior of the single-crystalline van der Waals bonded ferromagnet Cr2Ge2Te6. Phys Rev B 2018:98.

71. Blei M, Lado JL, Song Q, et al. Synthesis, engineering, and theory of 2D van der Waals magnets. Applied Physics Reviews 2021;8:021301.

72. Park SY, Kim DS, Liu Y, et al. Controlling the magnetic anisotropy of the van der Waals ferromagnet Fe3GeTe2 through hole doping. Nano Lett 2020;20:95-100.

73. Zhang RX, Wu F, Das Sarma S. Möbius insulator and higher-order topology in MnBi2nTe3n+1. Phys Rev Lett 2020;124:136407.

74. Mak KF, Shan J, Ralph DC. Probing and controlling magnetic states in 2D layered magnetic materials. Nat Rev Phys 2019;1:646-61.

75. Zhang S, Xu R, Luo N, Zou X. Two-dimensional magnetic materials: structures, properties and external controls. Nanoscale 2021;13:1398-424.

76. Flem G, Brec R, Ouvard G, Louisy A, Segransan P. Magnetic interactions in the layer compounds MPX3 (M = Mn, Fe, Ni; X = S, Se). Journal of Physics and Chemistry of Solids 1982;43:455-61.

77. Kim K, Lim SY, Lee JU, et al. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3. Nat Commun 2019;10:345.

78. Menichetti G, Calandra M, Polini M. Electronic structure and magnetic properties of few-layer Cr2Ge2Te6: the key role of nonlocal electron-electron interaction effects. 2D Mater 2019;6:045042.

79. Deiseroth H, Aleksandrov K, Reiner C, Kienle L, Kremer RK. Fe3GeTe2 and Ni3GeTe2 - two new layered transition - metal compounds: crystal structures, HRTEM investigations, and magnetic and electrical properties. Eur J Inorg Chem 2006;2006:1561-7.

80. Yan J, Zhang Q, Heitmann T, et al. Crystal growth and magnetic structure of MnBi2Te4. Phys Rev Materials 2019:3.

81. Xue Y, Zhang Y, Wang H, et al. Thickness-dependent magnetotransport properties in 1T VSe2 single crystals prepared by chemical vapor deposition. Nanotechnology 2020;31:145712.

82. Kim K, Lim SY, Kim J, et al. Antiferromagnetic ordering in van der Waals 2D magnetic material MnPS3 probed by Raman spectroscopy. 2D Mater 2019;6:041001.

83. Yi J, Zhuang H, Zou Q, et al. Competing antiferromagnetism in a quasi-2D itinerant ferromagnet: Fe3GeTe2. 2D Mater 2017;4:011005.

84. Mcguire MA, Clark G, Kc S, et al. Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl3 crystals. Phys Rev Materials 2017:1.

85. Qi H, Wang L, Sun J, et al. Production methods of Van der Waals heterostructures based on transition metal dichalcogenides. Crystals 2018;8:35.

86. Adhikari S, Selvaraj S, Kim D. Progress in powder coating technology using Atomic layer deposition. Adv Mater Interfaces 2018;5:1800581.

87. Nunn W, Truttmann TK, Jalan B. A review of molecular-beam epitaxy of wide bandgap complex oxide semiconductors. J Mater Res 2021;36:4846-64.

88. Liu H, Xue Y, Shi JA, et al. Observation of the kondo effect in multilayer single-crystalline VTe2 nanoplates. Nano Lett 2019;19:8572-80.

89. Bagga V, Kaur D. Synthesis, magnetic ordering, transport studies on spintronic device heterostructures of 2D magnetic materials: a review. Materials Today: Proceedings 2020;28:1938-42.

90. Jiang H, Zhang P, Wang X, Gong Y. Synthesis of magnetic two-dimensional materials by chemical vapor deposition. Nano Res 2021;14:1789-801.

91. Liu S, Yuan X, Zou Y, et al. Wafer-scale two-dimensional ferromagnetic Fe3GeTe2 thin films grown by molecular beam epitaxy. NPJ 2D Mater Appl 2017:1.

92. Huang P, Zhang P, Xu S, Wang H, Zhang X, Zhang H. Recent advances in two-dimensional ferromagnetism: materials synthesis, physical properties and device applications. Nanoscale 2020;12:2309-27.

93. Wu M, Li Z, Cao T, Louie SG. Physical origin of giant excitonic and magneto-optical responses in two-dimensional ferromagnetic insulators. Nat Commun 2019;10:2371.

94. Gibertini M, Koperski M, Morpurgo AF, Novoselov KS. Magnetic 2D materials and heterostructures. Nat Nanotechnol 2019;14:408-19.

95. Gong C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 2019; 363:eaav4450.

96. Kitaev A. Anyons in an exactly solved model and beyond. Ann Phys 2006;321:2-111.

97. Hikami S, Tsuneto T. Phase transition of quasi-two dimensional planar system. Progress of Theoretical Physics 1980;63:387-401.

98. Kosterlitz JM, Thouless DJ. Ordering, metastability and phase transitions in two-dimensional systems. J Phys C: Solid State Phys 1973;6:1181-203.

99. Iwashita T, Uryû N. Effects of biquadratic exchange in ferromagnets. Phys Rev B 1976;14:3090-6.

100. Dzyaloshinsky I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. Journal of Physics and Chemistry of Solids 1958;4:241-55.

101. Moriya T. Anisotropic superexchange interaction and weak ferromagnetism. Phys Rev 1960;120:91-8.

102. Grechnev A, Irkhin VY, Katsnelson MI, Eriksson O. Thermodynamics of a two-dimensional Heisenberg ferromagnet with dipolar interaction. Phys Rev B 2005:71.

103. Jiang P, Wang C, Chen D, et al. Stacking tunable interlayer magnetism in bilayer CrI3. Phys Rev B 2019:99.

104. Kan M, Adhikari S, Sun Q. Ferromagnetism in MnX2 (X = S, Se) monolayers. Phys Chem Chem Phys 2014;16:4990-4.

105. Burch KS, Mandrus D, Park JG. Magnetism in two-dimensional van der Waals materials. Nature 2018;563:47-52.

106. Liu J, Meng S, Sun JT. Spin-orientation-dependent topological states in Two-dimensional antiferromagnetic NiTl2S4 monolayers. Nano Lett 2019;19:3321-6.

107. Bender SA, Duine RA, Tserkovnyak Y. Electronic pumping of quasiequilibrium Bose-Einstein-condensed magnons. Phys Rev Lett 2012;108:246601.

108. Park T, Peng L, Liang J, et al. Néel-type skyrmions and their current-induced motion in van der Waals ferromagnet-based heterostructures. Phys Rev B 2021:103.

109. Jiang J, Liu X, Li R, Mi W. Topological spin textures in a two-dimensional MnBi2(Se,Te)4 Janus material. Appl Phys Lett 2021;119:072401.

110. Jiang J, Li R, Mi W. Electrical control of topological spin textures in two-dimensional multiferroics. Nanoscale 2021;13:20609-14.

111. Pervishko AA, Baglai MI, Eriksson O, Yudin D. Another view on Gilbert damping in two-dimensional ferromagnets. Sci Rep 2018;8:17148.

112. Afanasiev D, Hortensius JR, Matthiesen M, et al. Controlling the anisotropy of a van der Waals antiferromagnet with light. Sci Adv 2021;7:eabf3096.

113. Seyler KL, Zhong D, Klein DR, et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nature Phys 2018;14:277-81.

114. Zhong D, Seyler KL, Linpeng X, et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci Adv 2017;3:e1603113.

115. Webster L, Liang L, Yan JA. Distinct spin-lattice and spin-phonon interactions in monolayer magnetic CrI3. Phys Chem Chem Phys 2018;20:23546-55.

116. Katanin A. Quantum critical behavior of antiferromagnetic itinerant systems with van Hove singularities. Phys Rev B 2010:81.

117. Yazyev OV, Capaz RB, Louie SG. Theory of magnetic edge states in chiral graphene nanoribbons. Phys Rev B 2011:84.

118. Seyler KL, Zhong D, Huang B, et al. Valley manipulation by optically tuning the magnetic proximity effect in WSe2/CrI3 heterostructures. Nano Lett 2018;18:3823-8.

119. Dolui K, Pemmaraju CD, Sanvito S. Electric field effects on armchair MoS2 nanoribbons. ACS Nano 2012;6:4823-34.

120. Tian Y, Gao W, Henriksen EA, Chelikowsky JR, Yang L. Optically driven magnetic phase transition of monolayer RuCl3. Nano Lett 2019;19:7673-80.

121. Tian S, Zhang JF, Li C, et al. Ferromagnetic van der Waals crystal VI3. J Am Chem Soc 2019;141:5326-33.

122. Ersan F, Vatansever E, Sarikurt S, et al. Exploring the electronic and magnetic properties of new metal halides from bulk to two-dimensional monolayer: RuX3 (X = Br, I). Journal of Magnetism and Magnetic Materials 2019;476:111-9.

123. Tartaglia TA, Tang JN, Lado JL, et al. Accessing new magnetic regimes by tuning the ligand spin-orbit coupling in van der Waals magnets. Sci Adv 2020;6:eabb9379.

124. Zhang Z, Shang J, Jiang C, Rasmita A, Gao W, Yu T. Direct photoluminescence probing of ferromagnetism in monolayer two-dimensional CrBr3. Nano Lett 2019;19:3138-42.

125. Liu J, Sun Q, Kawazoe Y, Jena P. Exfoliating biocompatible ferromagnetic Cr-trihalide monolayers. Phys Chem Chem Phys 2016;18:8777-84.

126. Ren Y, Li Q, Wan W, Liu Y, Ge Y. High-temperature ferromagnetic semiconductors: Janus monolayer vanadium trihalides. Phys Rev B 2020:101.

127. Yaresko AN. Electronic band structure and exchange coupling constants in ACr2X4 spinels (A=Zn , Cd, Hg; X=O , S, Se). Phys Rev B 2008:77.

128. Bedoya-Pinto A, Ji JR, Pandeya AK, et al. Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science 2021;374:616-20.

129. Ubrig N, Wang Z, Teyssier J, et al. Low-temperature monoclinic layer stacking in atomically thin CrI3 crystals. 2D Mater 2019;7:015007.

130. Torelli D, Olsen T. Calculating critical temperatures for ferromagnetic order in two-dimensional materials. 2D Mater 2019;6:015028.

131. Chen L, Chung J, Stone MB, et al. Magnetic Field Effect on Topological Spin Excitations in CrI3. Phys Rev X 2021:11.

132. Li R, Jiang J, Shi X, Mi W, Bai H. Two-dimensional Janus FeXY (X, Y = Cl, Br, and I, X ≠ Y) monolayers: half-metallic ferromagnets with tunable magnetic properties under strain. ACS Appl Mater Interfaces 2021;13:38897-905.

133. Qi S, Jiang J, Wang X, Mi W. Valley polarization, magnetic anisotropy and Dzyaloshinskii-Moriya interaction of two-dimensional graphene/Janus 2H-VSeX(X = S, Te) heterostructures. Carbon 2021;174:540-55.

134. Fu L, Liu X, Zhou B, Wang X. Prediction of high spin polarization and perpendicular magnetic anisotropy in two dimensional ferromagnetic Mn2CXX’ (X, X′=F, Cl, Br, I) Janus monolayers. Physica E: Low-dimensional Systems and Nanostructures 2021;134:114932.

135. Zhang F, Mi W, Wang X. Spin-dependent electronic structure and magnetic anisotropy of 2D ferromagnetic janus Cr2I3. X ;6:1900778.

136. Xu Y, Qi S, Mi W. Electronic structure and magnetic properties of two-dimensional h-BN/Janus 2H-VSeX (X = S, Te) van der Waals heterostructures. Applied Surface Science 2021;537:147898.

137. Li R, Jiang J, Mi W, Bai H. Room temperature spontaneous valley polarization in two-dimensional FeClBr monolayer. Nanoscale 2021;13:14807-13.

138. Fu L, Wang X, Mi W. Spin-dependent electronic structure and magnetic properties of 2D JANUS Mn2CFCl/CuBiP2 Se6 Van Der Waals multiferroic heterostructures. Adv Theory Simul 2021;4:2100302.

139. Liang J, Wang W, Du H, et al. Very large Dzyaloshinskii-Moriya interaction in two-dimensional Janus manganese dichalcogenides and its application to realize skyrmion states. Phys Rev B 2020:101.

140. Qi S, Jiang J, Mi W. Tunable valley polarization, magnetic anisotropy and Dzyaloshinskii-Moriya interaction in two-dimensional intrinsic ferromagnetic Janus 2H-VSeX (X = S, Te) monolayers. Phys Chem Chem Phys 2020;22:23597-608.

141. Son S, Coak MJ, Lee N, et al. Bulk properties of the van der Waals hard ferromagnet VI3. Phys Rev B 2019:99.

142. Ramasubramaniam A, Naveh D. Mn-doped monolayer MoS2: an atomically thin dilute magnetic semiconductor. Phys Rev B 2013:87.

143. Yu W, Li J, Herng TS, et al. Chemically exfoliated VSe2 monolayers with room-temperature ferromagnetism. Adv Mater 2019;31:e1903779.

144. Lee S, Park TB, Kim J, et al. Tuning the charge density wave quantum critical point and the appearance of superconductivity in TiSe2. Phys Rev Research 2021:3.

145. Liu Z, Wu X, Shao Y, et al. Epitaxially grown monolayer VSe2: an air-stable magnetic two-dimensional material with low work function at edges. Science Bulletin 2018;63:419-25.

146. Wei S, Liao X, Wang C, et al. Emerging intrinsic magnetism in two-dimensional materials: theory and applications. 2D Mater 2020;8:012005.

147. Zhang W, Guo HT, Jiang J, et al. Magnetism and magnetocrystalline anisotropy in single-layer PtSe2: interplay between strain and vacancy. Journal of Applied Physics 2016;120:013904.

148. Zhang H, Fan X, Yang Y, Xiao P. Strain engineering the magnetic states of vacancy-doped monolayer MoSe2. Journal of Alloys and Compounds 2015;635:307-13.

149. Fuh H, Yan B, Wu S, Felser C, Chang C. Metal-insulator transition and the anomalous hall effect in the layered magnetic materials VS2 and VSe2. New J Phys 2016;18:113038.

150. Mishra R, Zhou W, Pennycook SJ, Pantelides ST, Idrobo J. Long-range ferromagnetic ordering in manganese-doped two-dimensional dichalcogenides. Phys Rev B 2013:88.

151. Wang Y, Li S, Yi J. Electronic and magnetic properties of Co doped MoS2 monolayer. Sci Rep 2016;6:24153.

152. Shi M, Mo P, Lu J, Liu J. Strain-enhanced electron mobility and mobility anisotropy in a two-dimensional vanadium diselenide monolayer. Journal of Applied Physics 2019;126:044305.

153. Wang Z, Zhang T, Ding M, et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat Nanotechnol 2018;13:554-9.

154. Lee JU, Lee S, Ryoo JH, et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett 2016;16:7433-8.

155. Chu H, Roh CJ, Island JO, et al. Linear magnetoelectric phase in ultrathin MnPS3 probed by optical second harmonic generation. Phys Rev Lett 2020;124:027601.

156. Wang Y, Zhang J, Li C, et al. Raman scattering study of magnetic layered MPS3 crystals ( M = Mn , Fe, Ni)*. Chinese Phys B 2019;28:056301.

157. Long G, Henck H, Gibertini M, et al. Persistence of Magnetism in Atomically Thin MnPS3 Crystals. Nano Lett 2020;20:2452-9.

158. Liu S, Granados Del Águila A, Bhowmick D, et al. Direct observation of magnon-phonon strong coupling in two-dimensional antiferromagnet at high magnetic fields. Phys Rev Lett 2021;127:097401.

159. Kim SY, Kim TY, Sandilands LJ, et al. Charge-spin correlation in van der Waals antiferromagnet NiPS_{3}. Phys Rev Lett 2018;120:136402.

160. Haines CRS, Coak MJ, Wildes AR, et al. Pressure-induced electronic and structural phase evolution in the van der Waals compound FePS_{3}. Phys Rev Lett 2018;121:266801.

161. Xu C, Feng J, Xiang H, Bellaiche L. Interplay between Kitaev interaction and single ion anisotropy in ferromagnetic CrI3 and CrGeTe3 monolayers. npj Comput Mater 2018:4.

162. Baranava M, Hvazdouski D, Skachkova V, Stempitsky V, Danilyuk A. Magnetic interactions in Cr2Ge2Te6 and Cr2Si2Te6 monolayers: ab initio study. Materials Today: Proceedings 2020;20:342-7.

163. Liu Y, Petrovic C. Critical behavior of quasi-two-dimensional semiconducting ferromagnet Cr2Ge2Te6. Phys Rev B 2017:96.

164. Feng YP, Shen L, Yang M, et al. Prospects of spintronics based on 2D materials. WIREs Comput Mol Sci 2017:7.

165. Dong E, Liu B, Dong Q, et al. Effects of pressure on the structure and properties of layered ferromagnetic Cr2Ge2Te6. Physica B: Condensed Matter 2020;595:412344.

166. Song C, Liu X, Wu X, et al. Surface-vacancy-induced metallicity and layer-dependent magnetic anisotropy energy in Cr2Ge2Te6. J Appl Phys 2019;126:105111.

167. Liu W, Wang Y, Han Y, et al. Anisotropic magnetoresistance behaviors in the layered ferromagnetic Cr2Ge2Te6. J Phys D: Appl Phys 2020;53:025101.

168. Wang N, Tang H, Shi M, et al. Transition from ferromagnetic semiconductor to ferromagnetic metal with enhanced curie temperature in Cr2Ge2Te6 via organic ion intercalation. J Am Chem Soc 2019;141:17166-73.

169. Fang Y, Wu S, Zhu Z, Guo G. Large magneto-optical effects and magnetic anisotropy energy in two-dimensional Cr2Ge2Te6. Phys Rev B 2018:98.

170. Han MG, Garlow JA, Liu Y, et al. Topological magnetic-spin textures in two-dimensional van der Waals Cr2Ge2Te6. Nano Lett 2019;19:7859-65.

171. Tian Y, Gray MJ, Ji H, Cava RJ, Burch KS. Magneto-elastic coupling in a potential ferromagnetic 2D atomic crystal. 2D Mater 2016;3:025035.

172. Zhuang HL, Kent PRC, Hennig RG. Strong anisotropy and magnetostriction in the two-dimensional Stoner ferromagnet Fe3GeTe2. Phys Rev B 2016:93.

173. Tong Q, Chen M, Yao W. Magnetic proximity effect in a van der Waals Moiré superlattice. Phys Rev Applied 2019:12.

174. Qi X, Zhang S. Topological insulators and superconductors. Rev Mod Phys 2011;83:1057-110.

175. Mogi M, Tsukazaki A, Kaneko Y, et al. Ferromagnetic insulator Cr2Ge2Te6 thin films with perpendicular remanence. APL Materials 2018;6:091104.

176. Tan C, Lee J, Jung SG, et al. Hard magnetic properties in nanoflake van der Waals Fe3GeTe2. Nat Commun 2018;9:1554.

177. Wang H, Xu R, Liu C, et al. Pressure-dependent intermediate magnetic phase in thin Fe3GeTe2 flakes. J Phys Chem Lett 2020;11:7313-9.

178. May AF, Calder S, Cantoni C, Cao H, Mcguire MA. Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe3-xGeTe2. Phys Rev B 2016:93.

179. Fei Z, Huang B, Malinowski P, et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat Mater 2018;17:778-82.

180. Li Q, Yang M, Gong C, et al. Patterning-induced ferromagnetism of Fe3GeTe2 van der Waals materials beyond room temperature. Nano Lett 2018;18:5974-80.

181. Hu X, Zhao Y, Shen X, Krasheninnikov AV, Chen Z, Sun L. Enhanced ferromagnetism and tunable magnetism in Fe3GeTe2 monolayer by strain engineering. ACS Appl Mater Interfaces 2020;12:26367-73.

182. Zhang Y, Lu H, Zhu X, et al. Emergence of Kondo lattice behavior in a van der Waals itinerant ferromagnet, Fe3GeTe2. Sci Adv 2018;4:eaao6791.

183. Zhao M, Chen BB, Xi Y, et al. Kondo holes in the two-dimensional itinerant ising ferromagnet Fe3GeTe2. Nano Lett 2021;21:6117-23.

184. Wang Y, Chen X, Long M. Modifications of magnetic anisotropy of Fe3GeTe2 by the electric field effect. Appl Phys Lett 2020;116:092404.

185. Lin H, Yan F, Hu C, et al. Current-assisted magnetization reversal in Fe3GeTe2 van der Waals homojunctions. Nanoscale 2022;14:2352-8.

186. Wu Q, Ang YS, Cao L, Ang LK. Design of metal contacts for monolayer Fe3GeTe2 based devices. Appl Phys Lett 2019;115:083105.

187. Krstajić P, Peeters F, Ivanov V, Fleurov V, Kikoin K. Double-exchange mechanisms for Mn-doped III-V ferromagnetic semiconductors. Phys Rev B 2004:70.

188. Wang H, Wang C, Li Z, et al. Characteristics and temperature-field-thickness evolutions of magnetic domain structures in van der Waals magnet Fe3GeTe2 nanolayers. Appl Phys Lett 2020;116:192403.

189. Li J, Li Y, Du S, et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Sci Adv 2019;5:eaaw5685.

190. Zhou Y, Wu MW. Electron spin relaxation in graphene from a microscopic approach: role of electron-electron interaction. Phys Rev B 2010:82.

191. Soriano D, Katsnelson MI, Fernández-Rossier J. Magnetic two-dimensional chromium trihalides: a theoretical perspective. Nano Lett 2020;20:6225-34.

192. Ningrum VP, Liu B, Wang W, et al. Recent advances in two-dimensional magnets: physics and devices towards spintronic applications. Research (Wash D C) 2020;2020:1768918.

193. Javaid M, Taylor PD, Tawfik SA, Spencer MJS. Tuning the Schottky barrier height in a multiferroic In2Se3/Fe3GeTe2 van der Waals heterojunction. Nanoscale 2022;14:4114-22.

194. Kamerbeek AM, Ruiter R, Banerjee T. Large room-temperature tunneling anisotropic magnetoresistance and electroresistance in single ferromagnet/Nb:SrTiO3 Schottky devices. Sci Rep 2018;8:1378.

195. Xi Z, Ruan J, Li C, et al. Giant tunnelling electroresistance in metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier. Nat Commun 2017;8:15217.

196. Zhu R, Zhang W, Shen W, et al. Exchange bias in van der Waals CrCl3/Fe3GeTe2 heterostructures. Nano Lett 2020;20:5030-5.

197. He QL, Hughes TL, Armitage NP, Tokura Y, Wang KL. Topological spintronics and magnetoelectronics. Nat Mater 2022;21:15-23.

198. Cai R, Yao Y, Lv P, et al. Evidence for anisotropic spin-triplet Andreev reflection at the 2D van der Waals ferromagnet/superconductor interface. Nat Commun 2021;12:6725.

199. Kezilebieke S, Huda MN, Dreher P, et al. Electronic and magnetic characterization of epitaxial VSe2 monolayers on superconducting NbSe2. Commun Phys 2020:3.

200. Alegria LD, Ji H, Yao N, Clarke JJ, Cava RJ, Petta JR. Large anomalous Hall effect in ferromagnetic insulator-topological insulator heterostructures. Appl Phys Lett 2014;105:053512.

201. Hejazi K, Luo ZX, Balents L. Noncollinear phases in moiré magnets. Proc Natl Acad Sci U S A 2020;117:10721-6.

202. Balents L, Dean CR, Efetov DK, Young AF. Superconductivity and strong correlations in moiré flat bands. Nat Phys 2020;16:725-33.

203. Tong Q, Liu F, Xiao J, Yao W. Skyrmions in the Moiré of van der Waals 2D magnets. Nano Lett 2018;18:7194-9.

204. Cardoso C, Soriano D, García-Martínez NA, Fernández-Rossier J. Van der Waals spin valves. Phys Rev Lett 2018;121:067701.

205. Song T, Tu MW, Carnahan C, et al. Voltage control of a van der Waals spin-filter magnetic tunnel junction. Nano Lett 2019;19:915-20.

206. Lin H, Yan F, Hu C, et al. Spin-valve effect in Fe3GeTe2/MoS2/Fe3GeTe2 van der Waals heterostructures. ACS Appl Mater Interfaces 2020;12:43921-6.

207. Gennes P. Coupling between ferromagnets through a superconducting layer. Physics Letters 1966;23:10-1.

208. Fukami S, Anekawa T, Zhang C, Ohno H. A spin-orbit torque switching scheme with collinear magnetic easy axis and current configuration. Nat Nanotechnol 2016;11:621-5.

209. Wang X, Tang J, Xia X, et al. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. Sci Adv 2019;5:eaaw8904.

210. Johansen Ø, Risinggård V, Sudbø A, Linder J, Brataas A. Current control of magnetism in two-dimensional Fe3GeTe2. Phys Rev Lett 2019;122:217203.

Microstructures
ISSN 2770-2995 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/